Transposition of the autonomous Fot1 element in the filamentous fungus Fusarium oxysporum.
نویسندگان
چکیده
Autonomous mobility of different copies of the Fot1 element was determined for several strains of the fungal plant pathogen Fusarium oxysporum to develop a transposon tagging system. Two Fot1 copies inserted into the third intron of the nitrate reductase structural gene (niaD) were separately introduced into two genetic backgrounds devoid of endogenous Fot1 elements. Mobility of these copies was observed through a phenotypic assay for excision based on the restoration of nitrate reductase activity. Inactivation of the Fot1 transposase open reading frame (frameshift, deletion, or disruption) prevented excision in strains free of Fot1 elements. Molecular analysis of the Nia+ revertant strains showed that the Fot1 element reintegrated frequently into new genomic sites after excision and that it can transpose from the introduced niaD gene into a different chromosome. Sequence analysis of several Fot1 excision sites revealed the so-called footprint left by this transposable element. Three reinserted Fot1 elements were cloned and the DNA sequences flanking the transposon were determined using inverse polymerase chain reaction. In all cases, the transposon was inserted into a TA dinucleotide and created the characteristic TA target site duplication. The availability of autonomous Fot1 copies will now permit the development of an efficient two-component transposon tagging system comprising a trans-activator element supplying transposase and a cis-responsive marked element.
منابع مشابه
Recovery of Fusarium oxysporum Fo47 Mutants Affected in Their Biocontrol Activity After Transposition of the Fot1 Element.
ABSTRACT To investigate the biocontrol mechanisms by which the antagonistic Fusarium oxysporum strain Fo47 is active against Fusarium wilt, a Fot1 transposon-mediated insertional mutagenesis approach was adopted to generate mutants affected in their antagonistic activity. Ninety strains in which an active Fot1 copy had transposed were identified with a phenotypic assay for excision and tested f...
متن کاملEvolution of the Fot1 transposons in the genus Fusarium: discontinuous distribution and epigenetic inactivation.
To understand the evolution of Fot1, a member of the pogo family widely dispersed in ascomycetes, we have performed a phylogenetic survey across the genus Fusarium divided into six sections. The taxonomic distribution of Fot1 is not homogeneous but patchy; it is prevalent in the Fusarium oxysporum complex, absent in closely related sections, and found in five species from the most distant secti...
متن کاملControlled Green Synthesis of Silver Nanoparticles Using Culture Supernatant of Filamentous Fungus
The focus of this study was to evaluate the effects of some parameters influencing the size and size distribution of the silver nanoparticles (AgNPs) produced by culture supernatant of Fusarium oxysporum. Results revealed that in the reaction solution containing equal volume of silver nitrate and culture supernatant; pH, temperature, and light source can control the AgNP’s characteristics. ...
متن کاملForet1, a reverse transcriptase-like sequence in the filamentous fungus Fusarium oxysporum.
We report here the isolation of Foret1, a repeated DNA sequence cloned from the fungal plant pathogen Fusarium oxysporum. This clone exhibits a high degree of sequence similarity with the retroviral pol genes. Sequences homologous to protease, reverse transcriptase, ribonuclease H are found in that order. The overall structure is homologous to the 'gypsy' class of LTR-retrotransposons. Its simi...
متن کاملمطالعه تأثیر نماتود مولد گره ریشه( Meloidogyne javanica ) بر فعالیت آنزیم فنیل آلانین آمونیالیاز در ریشه گوجهفرنگی در تعامل با قارچ عامل پژمردگی آوندی گوجهفرنگی Fusarium oxysporum f.sp. lycopersici
This research was conducted to study the effect of nematode (Meloidogyne javanica) on severity of tomato Fusarium wilt (Fusarium oxysporum f.sp. lycopersici race 1) and changes in Phenylalanine ammonia lyase (PAL) activity in split-root assays to show the possibility of systemic induced susceptibility caused by nematode to the fungus by local nematode infection. The results showed that the acti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genetics
دوره 151 3 شماره
صفحات -
تاریخ انتشار 1999